$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta, \text{ or}$$

$$\sin^2 \alpha \geq (\sin \alpha \cos \beta + \cos \alpha \sin \beta)(\sin \alpha \cos \beta - \cos \alpha \sin \beta)$$

$$= \sin^2 \alpha \cos^2 \beta - \cos^2 \alpha \sin^2 \beta.$$

Adding $\cos^2 \alpha$ to both sides of the above inequality we obtain

$$1 \geq \cos^2 \alpha - \cos^2 \alpha \sin^2 \beta + \sin^2 \alpha \cos^2 \beta = \cos^2 \alpha (1 - \sin^2 \beta) + \sin^2 \alpha \cos^2 \beta$$

$$1 \geq \cos^2 \alpha \cos^2 \beta + \sin^2 \alpha \cos^2 \beta = (\cos^2 \beta)(\cos^2 \alpha + \sin^2 \alpha)$$

 $1 \geq \cos^2 \beta$, and this proves the conjecture.

Also solved by Michael Brozinsky, Central Islip, NY; Jerry Chu (student, Saint George's School), Spokane, WA; Kee-Wai Lau, Hong Kong, China; David Stone and John Hawkins, Georgia Southern University, Statesboro GA, and the proposer.

• 5345: Proposed by Arkady Alt, San Jose, CA

Let a, b > 0. Prove that for any x, y the following inequality holds

$$|a\cos x + b\cos y| \le \sqrt{a^2 + b^2 + 2ab\cos(x+y)},$$

and find when equality occurs.

Solution 1 by Michael Brozinsky, Central Islip, NY

Since $\sqrt{u^2} = |u|$, the left hand side of the given inequality can be written as

$$a^2\cos^2 x + 2ab\cos x\cos y + b^2\cos^2 y,$$

and so using the identities $\sin^2 u = 1 - \cos^2 u$ and $\cos(x + y) = \cos x \cos y - \sin x \sin y$, it must be shown that

$$a^2 \sin^2 x + b^2 \sin^2 y \ge 2ab \sin x \sin y.$$

This is true from the AM-GM inequality, with equality if, and only if, $a \sin x = b \sin y$.

Solution 2 by Paul M. Harms, North Newton, KS

Since each side of the inequality is a nonnegative number, the inequality holds if the square of the left side is less than or equal to the square of the right side. We need to show that

$$(a\cos x + b\sin y)^2 = a^2\cos^2 x + 2ab\cos x\cos y + b^2\cos^2 y \le a^2 + b^2 + 2ab\cos(x+y).$$

The last inequality is equivalent to

$$0 \le a^{2} (1 - \cos^{2} x) + b^{2} (1 - \cos^{2} y) + 2ab (\cos(x + y) - \cos x \cos y)$$

$$= a^{2} \sin^{2} x + b^{2} \sin^{2} y + 2ab ((\cos x \cos y - \sin x \sin y) - \cos x \cos y)$$

$$= (a \sin x - b \sin y)^{2}.$$

Clearly, $0 \le (a \sin x - b \sin y)^2$ so the problem inequality holds. Equality will hold when $a \sin x = b \sin y$ or $\frac{a}{b} = \frac{\sin x}{\sin y}$.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC; Dionne Bailey, Elsie Campbell, Charles Diminnie, and Karl Havlak, Angelo State University, San Angelo, TX; Brian D. Beasley, Presbyterian College, Clinton, SC; Jerry Chu (student, Saint George's School), Spokane, WA; Bruno Salgueiro Fanego, Viveiro, Spain; Ethan Gegner (student, Taylor University), Upland, IN; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, Tor Vergata, Rome, Italy; Albert Stadler, Herrliberg, Switzerland; Neculai Stanciu, "George Emil Palade" School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania; David Stone and John Hawkins, Georgia Southern University, Statesboro GA; Vu Tran (student, Purdue University), West Lafayette, IN; Nicusor Zlota, "Traian Vula" Technical College, Focsani, Romania, and the proposer.

• 5346: Proposed by D.M. Bătinetu-Giurgiu, "Matei Basarab" National College, Bucharest, Romania and Neculai Stanciu, "George Emil Palade" School, Buzău, Romania

Show that in any triangle ABC, with the usual notations, the following hold,

$$\frac{h_b + h_c}{h_a} r_a^2 + \frac{h_c + h_a}{h_b} r_b^2 + \frac{h_a + h_b}{h_c} r_c^2 \ge 2s^2,$$

where r_a is the excircle tangent to side a of the triangle and s is the triangle's semiperimeter.

Solution 1 by Moti Levy, Rehovot, Israel

From geometry of the triangle:

$$h_a = \frac{2}{\frac{1}{r_b} + \frac{1}{r_c}}, \ h_b = \frac{2}{\frac{1}{r_a} + \frac{1}{r_c}}, \ h_c = \frac{2}{\frac{1}{r_b} + \frac{1}{r_a}}.$$
 (1)

Solving (1) for r_a , r_b and r_c , we get

$$r_a = \frac{h_a h_b h_c}{h_a h_b + h_a h_c - h_b h_c}$$